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INTRODUCTION

Bernstein polynomials play an important role in various areas of mathe
matics. They provide a useful tool in the analysis of numerous problems
while also furnishing a source of ideas for further research. The book of
G. G. Lorentz [7] provides an excellent source for many of their attractive
properties. In this paper we are concerned with two basic properties of the
Bernstein polynomials

B"U; x) =I f( ~)(~) xk(1 - X)"-k,fE qo, 1],
k~O

X E [0, 1].

The first is the fact that Bn(f, x) converges uniformly to I and the second is
the fact that the rate of convergence cannot exceed lin, except when I is a
linear function. This latter statement expresses the fact that the Bernstein
polynomials are saturated with order lin. The proof, of these results are
known to depend only on the behavior of Bn on the subspace of quadratic
polynomials and the observation that Bn is a positive linear operator for all n
[2, 6]. Thus the convergence of the Bernstein polynomials can be proved by
applying Korovkin's theorem while their saturation is proved by the "para
bolic method" of Bajsanski and Bojanic [2]. Here we will give a general
setting for these two results. This setting will follow naturally from a study
of the following question suggested in [8] (see also [9]).

PROBLEM 1. Given a compact set X and a set of "test functions" S (always
assumed to be a closed subspace of C(X) containing a positive function),
describe all nonnegative operators Ton C(X) with the property that whenever
{Tn} is a sequence of nonnegative operators converging to Ton S it follows
that lim n _ ce Tnl .~= Tlfor all/E C(X).
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We note that in the case that the identity operator J has the property
described above, the set S is called a Korovkin subspace of C(X).

Here we will denote the dual of C(X) (Radon measures on X) by M(X)
while 111: (X) will denote the cone of positive Radon measures on X. In
Section I we show that solution of the above problem requires the identi
fication of all elements of M+(X) which are uniquely determined by S. We
denote this set by U(S). Thus fL E U(S) provided that whenever v E M' (X)
with fLU) vU) for aIlfE S then fL v. In Section 2 we give a characteri
zation of U(S) while Section 3 contains a closer discussion of U(S) when S'
is a subspace of "parabolic functions" (see Section 3 for their definition).
Section 3 also contains some applications to fixed points and saturation of
positive linear operators. It is in Section 3 that we generalize and unify the
two properties of the Bernstein polynomials mentioned earlier. We conclude
the paper with some remarks about possible extensions of our results.

I. CONVERGENCE OF POSITIVE LINEAR OPERATORS

Let S be a closed linear subspace of C(X) which contains a positive function.
We define K(S) to be the class of all nonnegative linear operators Ton C(X)
with the property that if {T,} is a net of positive linear operators which
converge to Ton S then {T.,} converges to Ton C(X).

The use of nets rather than sequences as described in the introduction
allows us to state Theorem I. I below without the hypothesis of metrizability
on the compact set X. When X is first countable this distinction is unnecessary.

We will use the symbol EJ' to denote the Dirac measure defined by
Elf) = f(x), fE C(X).

THEOREM 1.1. Let X be a compact Hausdorff space and S a closed linear
subspace of C(X) which contains a positive function. Then T E K(S) if and
only if EJ' 0 T E U(S) for all x E X.

Proof Suppose there exists a point y E X such that Ey 0 T if: U(S). We will
construct a net of positive linear operators converging to T on S but not
on C(X). From our hypothesis there exists a fL E M+(X) and agE C(X) such
that

T(g, y) * fL(g) and TU; y) cc fLU), fES. O.l)

Let {Vol I ,\ E .II} be the set of all open neighborhoods containing y. For
every ,\ E.I1, let,h be a function in C(X) which satisfies the following con
ditions

and
o ~jlx) I, XEX, (1.2)

,h(X) 0, x¢ Vol and j~(y) == l. (1.3)
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We define for ,\ E A the mapping

307

TJ = (1 -f~) Tf +hf-L(f), fE C(X). (1.4)

Obviously, {T" I ,\ E A} is a net of positive linear operators on C(X) which in
view of (1.1 )-( 1.3) satisfies the inequality

! T"U; x) - TCf; x)! ~ sup I T(f, x) - T(f, y)1 , (1.5)
xcv"

for all f E S, X E X. Thus {T,,} converges to T on S. But TA( g, Y) ~= f-L( g) cF
T( g, y) for ,\ E A which means {TA} does not converge to Ton C(X). Thus
we conclude T ~ K(S).

Conversely, suppose T ~ K(S). By virtue of the compactness of X, there
exists a net {TA ,\ E .!1} of positive linear operators which converges to Ton
S, a net {x,,} of points in X which converge to some y E X, a function II E C(X)

and an EO> °such that

;\ EA ( 1.6)

Since S contains a positive function the net {E,_ 0 TA I ;\ E .I1} is a norm
A

bounded subset of Mi(X). This implies that there exists a subnet {E O',\' ° T,,'}
which converges weakly to some )J E M I(X). v and E 1I 0 T agree on S because
by hypothesis {TA} converges to T on S. But it follows from (1.6) that
E y 0 T ef v and so E 1I 0 T ~ U(S). This completes the proof.

Remark. Theorem 1 can be generalized in the following way. For any
weakly closed convex subset L of M(X) consider the set of operators on C(X)
such that Ex 0 TEL for all x E X. Theorem 1 remains valid if we replace the
class of positive linear operators by the above class induced by Land Mi(X)
by L, wherever they appear in Theorem 1. I, and in the definition of K(S)
and U(S). In addition to the case L = M+(X), Lorentz considers in [8]
the two choices L 1 = {f-L I f-L E M(X), : f-L I(X):::; I} and L 1+ L 1 n Mt(X).

Perhaps the most interesting example of subspaces to consider are those
which are finite dimensional. If we specialize Theorem 1.1 to a finite
dimensional linear subspace, dim S = N, we conclude that every T E K(S)
is of the form

where

N

ru; x) =c I ;\,(x)f(alx»,
;",-,1

(1.6)

A;(x) 0, j = 1, ... ,N,

This result follows from the fact that every f-L E M+(X) can be represented
on S as a nonnegative sum of at most N Dirac measures f-L(f) =c L7~1 ;\,E".(f),,
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fE S. This fact is sometimes referred to as Tchakaloff's theorem. Thus, for
finite dimensional subspaces it is possiblc to obtain results analogous to
Korovkin's theorem only for the operators in (1.6). Whcn X is connected we
may reduce the support of Tin (1.6) to IV I) (a consequence of Fenchel's
theorem). This number can not in general be reduced further even when X is
assumed to be convex. Wc showed in [IOJ that the operator defined by
T(f; x) (I x) /(0) '" xj(I), x E [0, IJ, f E: qo, I] is in K(S) for
S quadratic polynomials. This positive operator is supported on two
points while the dimension of S is three. Wc will say more about this
code in Section 3. Let us now present a characterization of U(S).

2. A CHARACTERIZATION OF U(S)

For any fL E MI(X) and wE C(X) we define

lJ) s 0!s(fL) sup fL( g)
K<~(!)

Re.'>'

and

(2.1 )

(2.2)

Since S contains a positive function it follows that - 00 < Uis Ws < _L 00.

Furthermore, the definition of (2.]) and (2.2) yield the inequalities

(2.3)

We may interpret (2.3) as stating that the number v(w) where v is any extension
of fL from S to S", = [w, SJ, the linear subspace spanned by wand S, lies in
the closed interval [c.us(fL), WS(fL)J. Conversely, the linear functional defined

Ct E R. (2.3)

is a positive linear functional on S", if and only if C E [c.us(fL), ws(fL)J. Further
more, since S contains a positive function, F, can be extended to a positive
measure v" on C(X). These remarks are basic results from moment theory
and can be found in [3J or [5]. They enable us to establish the following
characterization of U(S).

THEOREM 2.1. fL E U(S) if and only if 0Js(fL) = ws(fL) for all wE C(X).

Proof If fL rf' U(S) then there exists a v E M!(X) and awE C(X) such that
v(g) = fL(g), g E Sand v(w) # fLew). Therefore, the interval [Uis(fL), ws(fL)]
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contains two distinct points which implies lJ},JfJ,) 7= ws(fJ,). Conversely,
suppose lJjs(fJ,) 7= ws(fJ,) for some wE C(X). Choose two distinct numbers c
and d in the interval [lJjs(fJ,), ws(fJ,)]. The measures J'e and Vd are distinct
extensions of fJ, and so fJ, tjc U(S).

Ifwe specialize Theorem 2.1 to fJ, c= EO' , X E X, we obtain from Theorem 1.1
a characterization of a Korovkin set which is due to Berens and Lorentz [4].

COROLLARY 1. I. S is a Korovkin subspace ifand only (Ifor every u) E C(X)
and x E X

inf g(x) = sup g(x).
g._:.>-w
gES

g"S~w

gES

3. U(S) WHEN S IS A SUBSPACE OF PARABOLIC FUNCTIONS

The simplest example of a Korovkin subspace for the space qo, 1] IS

the subspace of quadratic polynomials.
In [10] we show that U(S) where S is the subspace of quadratic polynomials,

consists precisely of nonnegative multiples of any Dirac measure Ex, X E [0, 1]
or "boundary measures" (measures supported on the extreme points of
[0, 1]), (l - x) EO + XEl , X E [0, 1]. In this section we give a generalization
of this result. To do this we will rely on several results which can be found
in [1].

E will denote a locally convex linear topological space and K a compact
convex subset of E. A(K) is the subspace of C(K) consisting of all continuous
affine function on K. Let c(,K denote the set of extreme points of K. It is
proved in [1] that

(3. I)

As a consequence of (3.1) and Theorem I we see that any positive linear
operator T which preserves affine functions satisfies the relation

Another obvious conclusion of (3.1) is that A(K) is not a Korovkin subspace
of C(K). However, we can remedy this by adding just one more function to
A(K). This leads use to define "parabolic functions" as any subspace of C(K)
of the form S = S[ep] = [ep, A(K)] where ep is a strictly convex continuous
function of K.

Recall that every convex function has a right Gateaux derivative, given by

D-'-( ..) - r ep(x + AY) - ep(x) _ . f ep(x + AY) - ep(x)
'I' x, Y - A~T,- A - l~o A
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for all x, y such that x EO K, x yEO K. We will say that ¢ is smooth provided
that for all x EO K the mapping y ->- D¢(x; Y - x) is in A(K). Any smooth
convex function has the property that it coincides with its lower envelope,

¢(x) = fC'C) ~_c max{a(x) i a

We may now prove the following result.

¢, a E A(K)}. (3.2)

PROPOSITION 3.1. if ¢ is a strictly convex smooth fimction then
{Acy I ,\ EO R!, X EO K} is contained in U(S[¢]).

Proof Given any x E K we conclude from (3.2) that there exists an aftine
function a E A(K) such that a ¢ and a(x) ==. ¢(x). The strict convexity
of ¢ implies that a( y) < ¢( y) for all y .x. Now, let p.. be any measure in
M+(X) which agrees with ACJ on the subspace S[¢]. Then p..(¢ a) O.
This implies that p.. p..( J) C J • To arrive at this conclusion we use the
foilowing property of positive measures. If p..(h) 0 for some h EO C(K)
which is nonnegative on K then p..(f) ~= 0 for allf such that {x I hex) ~~ O} C
{x If(x) =c OJ. Since I E S[¢] we also have ,\ = p..(I). Thus '\cJ E U(S[¢J).

Before we can identify other members of U(S[¢]) we .flrst describe
several results from [I].

A boundary measure is defined to be any p.. EM' (X) which is "supported"
on the extreme points of K. It can be shown that

(,.K n {x I fix) fix)}
IcC(K)

where j is the upper envelope off defined by

j(x) inf{a(x) , a f~ a E A(K)}.

Therefore p.. is defined to be a boundary measure if and only if

(3.3)

(3.4)

for all f E C(K). (3.5)

Boundary measures can also be characterized in terms of the following
ordering induced by the set P(K) of all continuous convex functions on K.

p.. < v -¢? p..(i) :S; v(f), fE P(K). (3.6)

It can be shown that p.. is a boundary measure if and only if it is a maximal
element with respect to this ordering. A positive measure p.. is said to represent
x E K if cx(a) == p..(a), for all a EO A(K). Every positive measure p.. represents
exactly one point in K. This point is called the resultant ofp... A compact convex
set K is called a Bauer simplex if and only if opK is closed and every x E K
is represented by a unique positive boundary measure IT,. .
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PROPOSITION 3.2. Suppose K is a Bauer simplex and ep is a strictly COlwex
continuousfunction on K, then {ltlI" : It E, R+, x E K} C U(S[ep]).

Proof Suppose x E K, /L E M+(X) and /L( g) ~ 1t1Ix(g), g E S[ep]. Since K
is a Bauer simplex, we have ~ E A(K)([I]). Since lIx is a boundary measure
we have from (3.5)

However, the strict convexity of ep implies

{x I ep(x) '" ~(x)} -= (',XC {x !!(x) ~~ j(x):, fE C(K)([I]).

Thus /LU - j) = 0 for all fE C(K) and so /L must be a boundary measure.
Hence, /L = 1t1I" where y is the resultant of/L. This follows from the assumption
that K is a Bauer simplex. Since A(K) separates points, we obtain x == y.

This completes the proof.
Our next proposition shows that every element in U(S) is a convex combi

nation of a Dirac measure and a boundary measure.

PROPOSITION 3.3. Suppose ep is a continuous convex function on a compact
convex set. Then every /L E U(S[ ep]) with /L(l) ] has the form /L =

(1- It) E,,; + 1t1Ix , for some ,\ E [0, I] where x is the resultant /L. Furthermore.
(f 0 < It < I then x ICC a,X --- a,x

Proof We have from (3.6) the inequalities

(3.7)

where lIx is a boundary measure representing x, the resultant of /L. Thus
there exists a It E [0, I] such that /L(ep) c= (l - It) EAep) -+- Itn.(ep). [t follows
that/L and (I - It) Ex + 1t1I". agree on the subspace U(S[ep]). Thus we conclude
that/L == (l - It) Eo. -+- 1t1I".

Suppose that 0 < It <':: I then clearly

(3.8)

Therefore x ¢ ocK since otherwise from (3.]) we would obtain E.J: = /L.
Hence there exists a nonzero y E E such that x --i- E Y ICC K for all E sufficiently
small. By virtue of (3.8) we obtain

(3.9)

for some positive E. Now we may argue just as before to conclude that there
existsancx E (0, ])suchthat/L = (I - cx)[~(ExtE!I + EO'E!I)] + cxlI". However,
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we have already proved fL = (I ~ A) E., +- Mlr . Thus it follows that
x E' oeK. This completes the proof.

We remark that there is an example (kindly communicated to us by
A. Gleit) which shows that in general no stronger conclusion can be made
about an element in U(S[1>]). Let V denote the subspace of qQ, 1] defined
by V Uife qQ, 1],fW 1(/(0) f(l))}. For our compact convex set
K we choose the state space of V, namely K {fL ; /1, c V*, fL 0, fL(I) fL
It can easily be verified that h /2) D"K· i'"K; this leads us to the desired
example.

Combining Propositions 3.1-3.3 we obtain a complete description of
U(S[1>]) when K is a Bauer simplex.

THEOREM 3.1. Suppose 1> is a strictly convex smooth function on a Bauer
simplex K. Then

U(S[1>]) ~= {AE x i A E' W, X E' Kl U {AlI" ',\ Ri, x E K}.

Let us specialize Theorem 3.1 to a finite dimensional simplex. In this
case,E~-RNandK.~.LlN {xixE'g"v,'L;:jX, !,x, O,i 1, ... ,N}.The
extreme points oeK = {eo, e1 , ... , eN} are defined by (ei)j Oii ' i c= 0, I, ..., N,
j = 1,... , N. If we choose 1>(x) = x . x = 'L;:l Xi 2 then

.1N

I XiOPi ;\ E' R+, x E' K(.
i=01

The case N = 1 was previously referred to in the beginning of this section.
We give two applications of the results presented in this section. The

first concerns fixed points of nonnegative operators. In the following
discussion we always assume K is a Bauer simplex.

Let T be a nonnegative linear operator on CCK) which preserves affine
functions T(a) = a, a E' A(K). Define S(K) {1> i 1> 0, 1> strictly concave,
smooth and continuous on Kl.

Set

A(T, 1» =c sup T(1), x)!<P(x)
xEK

1>(x) /0

and

;\(T) = inf A( T, <p).
,peSeK)

Note that 0 A(T) 1.

THEOREM 3.2. Suppose T is a nonnegative operator on C(K) which preserves
affine ./imctions. If;\( T) < 1 then the only .fixed points of T are in A(K).



POSITIVE LINEAR OPERATORS 313

Proof Since A(T) < I there exists a 4J E S(K) such that for:\ =~ HI -t-A(T))
«I) we have

T( 4J, x) :\4J(x), for x E K.

Thus limk~co P( 4J, x) =.c 0 uniformly in x EK. However, since :\ < I we
necessarily have 4J(x) c= 0 for all x E c,K. This implies that lim lc_q , Pg = g,
for all g E S[4J], where g is defined by IIig) = g(x), x E K. The corre
spondence g ---+ g is a positive linear operator on C(K) whose range is
contained in A(K)([I D. Thus by Theorem 1.1 and Proposition 3.2 we have
for allfE C(X)

Hence, if h is a fixed point of Tin C(K) we obtain h = Ii E A(K).
Using the idea employed in Theorem 3.2 we may prove a general "little 0"

saturation theorem for positive operators on a Bauer simplex.

THEOREM 3.3. Let {Tn} be a sequence of positive linear operators on C(K)
which preserves affine functions and satisfy the condition

A( Tn , 4J) < I, lim sup A(Tn , 4J) (3.10)

for some 4J E S(K). Then {T,J is saturated with order I ~ A(Tn ,ep). Thus
Tnf -f == 0(1 - A(Tn , 4J)) impliesf == jE A(K).

Prool OUf hypothesis implies that the norm of Tn is one. Therefore the
identity

k-l

T,/I-f= L Tn\Tnf-f)
j~O

implies that
Ii T,/I ._- fI1 k'l Tnf ~ f' .. (3.11 )

This inequality and our hypothesis imply that there exists a sequence of
integers {kn}, such that limn~CD kn(l- A(Tn , 4J)) = CIJ and limn~CD T:~n f f
However, from (3.10) we conclude that there exists a 4J E S(K) and a sub
sequence {n'} such that limn~co ;,(Tn, , 4J) = I and Tn'4J ~; ;,(Tn' , 4J) 4J. Thus
it follows that limn~CD T~r'4J = O. Just as before we conclude that
limn~oc T,~ff = f Thus f= j and the theorem is proved.

EXAMPLE 3.2. As an application of Theorem 3.3 let us look at the
Bernstein polynomials defined on the N-simplex .::1 N ,

Bn(f, x) = vL f (~)(~) 4Jv(X),
nELl:".:
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and
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-!. (x) c.= X
1
"1 ••• x'~'~(1 - x -

'1)/1. _. .,. 1

En is a positive linear operator C(Ll N ) which preserves affine functions.
N

Furthermore, E n ¢ .~ (I -_. lin) ¢ where ¢(x) L'IX;(1 -- Xi)' Thus from
Theorem 3.3, {Bn ] is saturated with order ]/11.

It is interesting to note that for N I there is no local saturation result
for the Bernstein polynomials on the simplex Ll N , while for N I such a
result is known to be true. For details on this matter see [2] and [9].

We end this paper with a question which is concerned with a possible
extension of Theorem 3.1.

Let C be a cone contained in C(X). C induces an ordering in Mf(X)

defined by

fL < l' if and only if fLU) fcC.

Suppose this ordering admits maximal and minimal elements. Thus for
every fL there exists a minimall!:. and maximal ji such that I!:. < fL < ji. Choose
some ¢ E C and let S[¢] be the subspace spanned by ¢ and the base of the
cone C n (-C). When is it true that

U(S[¢]) (3.12)

Our paper [10] as well as Theorem 3.1 give instances in which (3.12) is valid.
It would be interesting to have other examples of (3.12).
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